The realization space is [1 1 0 4*x1^2 - 4*x1 + 1 0 1 1 0 4*x1^2 - 4*x1 + 1 2*x1 - 1 2*x1 - 1] [1 0 1 x1^3 0 1 0 x1 - 1 x1^3 x1^2 x1^2] [0 0 0 0 1 1 1 2*x1 - 1 2*x1^3 - x1^2 x1^2 2*x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (12*x1^10 - 32*x1^9 - x1^8 + 99*x1^7 - 158*x1^6 + 120*x1^5 - 50*x1^4 + 11*x1^3 - x1^2) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, 2*x1 - 1, 3*x1^2 - 3*x1 + 1, x1^2 + x1 - 1, x1^2 - 3*x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, 2*x1^2 - 2*x1 + 1, 3*x1 - 1, 3*x1^3 - 5*x1^2 + 4*x1 - 1, 3*x1 - 2]